Function of a Function Mathematics N5

 

1.5 Chain Rule.

The Chain Rule for Function of Function is as stated.

      =     X                                                                                           =     X     X                                                                                The substitution of u reduces the function of a function problem to the most basic function.   Function of a function problems may be classified as stated in the tables *******.

 

 

 

 

Table 1.4

Category A. f’ (x) ≠ 1

 

Basic Function

Substitution

u=

Function of a Function

 

y

 

=   X  

1.

ex

f(x) = 2x

e2x

2.

Inx=loge x

f(x) =x3

Inx3=loge x3

3.

 ax

f(x) = 0.5x

a0.5x

4.

sinx

f(x) = x2+2x

Sin(x2+2x)

5.

cosx

f(x) = Inx

 Cos(Inx)

6.

tanx

f(x) = logx

Tan(logx)

7.

Cosecx

f(x) = 3x3+2x2

Cosec(3x3+2x2)

8.

Secx

f(x) = 5x2+4x

Sec(5x2+4x )

9.

 cot 50x

f(x) = 50x

cot 50x

Table 1.5

 

Function of Function

Substitution

u=  

Chain Rule Problem in terms of u

 

y

 

=   X  

1.

e2x

f(x) = 2x

eu

2.

Inx3=loge x3

f(x) =x3

In u =loge u

3.

a0.5x

f(x) = 0.5x

a0.5x

4.

Sin(x2+2x)

f(x) = x2+2x

Sin u

5.

 Cos(Inx)

f(x) = Inx

 Cos u

6.

Tan(logx)

f(x) = logx

Tan u

7.

Cosec(3x3+2x2)

f(x) = 3x3+2x2

Cosec u

8.

Sec(5x2+4x )

f(x) = 5x2+4x

Secu

9.

cot 50x

f(x) = 50x

cot u

 

Table 1.6 Function of a function in  terms of power greater than 1 or less than 1.

Category B. Exponent of standard function is less than 1 or greater than 1

 

Basic Function

New Exponent

Function of a Function

 

y

 

2.

(ex)1

0.5

e0.5x

3.

(Inx)1= (loge x)1

50

(Inx )50

= (loge x)50

4.

(ax)1

20

a20x

5.

(Sinx)1

-0.3

(Sinx)-0.3

6.

(Cosx)1

7

(Cosx)7

7.

(Tanx)1

18

(Tanx)18

8.

(Cosecx)1

0.6

(Cosecx)0.6

9.

(Secx)1

55

(Secx)55

10.

(cot x)1

13

(cot x)13

 

 

 

1.6 Differentiation Tables in terms of f(x).

The derivation of the formulas in the tables are based on the chain rule as stated previously. It is very fundamental for students to differentiate based on the method of tables and by method of chain rule.

 

Table 1.7

 

Differentiation

Tables

 

y=

Differential

1.

K[f(x)]n

Kn[f(x)]n-1f’(x)

2.

Kef(x)

Kf’(x)ef(x)

3.

Kaf(x)

Kf’(x)af(x) Ina

4.

KIn f(x)

K[f’(x)]/[f(x)]

5.

KIoga  f(x)

K[f’(x)]/[f(x)Ina]

6.

Ksin f(x)

Kf’(x)cosf(x)

7.

Kcos f(x)

-Kf’(x)sinf(x)

8.

Ktan f(x)

Kf’(x)sec2 f(x)

9.

Kcot f(x)

-Kf’(x)cosec 2f(x)

10.

Ksec f(x)

Kf’(x)sec f(x) tanf(x)

11.

Kcosec f(x)

Kf’(x)cosecf(x) cot f(x)

12.

Sin-1 f(x)

13.

Cos-1 f(x)

14.

Tan-1 f(x)

15.

Cosec-1 f(x)

16

Sec-1 f(x)

17.

Cot-1 f(x)

 

 

 

 

Table 1.8

Examples 1-9

 

Function of Function

f(x)

Chain Rule

 

y

u=

  X  

 

1.

e2x

2x

euX2

2e2x

2.

Inx3=loge x3

x3

(1/x3) X3x2

1/x

3.

a0.5x

0.5x

 

 

4.

Sin(x2+2x)

(x2+2x)

 

 

5.

 Cos(Inx)

(Inx)

 

 

6.

Tan(logx)

(logx)

(secu)2X…..

 

7.

Cosec(3x3+2x2)

(3x3+2x2)

f(x) = 3x3+2x2

 

8.

Sec(5x2+4x )

(5x2+4x )

f(x) = 5x2+4x

 

9.

cot 50x

50x

f(x) = 50x

 

 

1.7 Function of a Function of a Function.

The relationship between the chain rule problems as discussed above and Function of a Function of a Function are as illustrated in the tables below.

The chain rule problems as stated in the table below have been raised to a power greater or less than 1.        

Table 1.9

Category C. A function of a function raised to a power greater than 1 or less than 1. Refer to Table 1.8

 

 

Function of a Function

Exponent greater or less than 1  

Function of a Function of a

Function

 

 

 

=   X X

2.

(Inx3)1=

(loge x3)1

15

(Inx3)15

= (loge x3)15

4.

(Sin(x2+2x))1

19

(Sin(x2+2x))19

5.

 (Cos(Inx))1

0.25

 Cos(Inx))0.25

6.

(Tan(logx))1

-1/8

(Tan(logx))-1/8

7.

(Cosec(3x3+2x2))1

5

(Cosec(3x3+2x2))5

8.

(Sec(5x2+4x ))1

60

(Sec(5x2+4x ))60

9.

(cot 50x)1

20

(cot 50x)20

 

The second method of deriving a function of a function of a function is when the new f(x) is raised to a power greater than 1 or less than 1 as illustrated in the table below.

 

Table 1.10

Category D. A function of a function raised to a power greater than 1 or less than 1. See Table 1.8.

 

Function of a Function

Exponent greater or less than 1  

Function of a Function of a

Function

 

 

 

=   X  

1.

In (x3)1=

(loge(x3)1

50

In (x3)50

=loge(x3)50

2.

Sin(x2+2x)1

7

Sin(x2+2x)7

3.

 Cos(Inx)1

0.5

 Cos(Inx)0.5

4.

Tan(logx)1

1/3

Tan (logx)1/3

5.

Cosec(3x3+2x2)1

10

Cosec(3x3+2x2)10

6.

Sec(5x2+4x )1

9

Sec(5x2+4x )9

7.

cot (50x)1

4

cot (50x)4

 

The third method of deriving chain rule problems is a combination of the two modifications as illustrated in tables 1.9 and 1.10.

Table 1.11

Category E. A combination of the two previous tables. See Tables 1.9 and 1.10

 

Function of a Function of  a Function

Function of a Function of  a Function

Function of a Function of a

Function

 

 

 

=   X X

1.

(Inx3)15

= (loge x3)15

In (x3)50

=loge(x3)50

(In (x3)50 )15

= (loge(x3)50)15

2.

(Sin(x2+2x))19

Sin(x2+2x)7

(Sin(x2+2x)7)19

3.

 (Cos(Inx))0.25

 Cos(Inx)0.5

 (Cos(Inx)0.5)0.25

4.

(Tan(logx))-1/8

Tan (logx)1/3

(Tan (logx)1/3)-1/8

5.

(Cosec(3x3+2x2))5

Cosec(3x3+2x2)10

(Cosec(3x3+2x2)10)5

6.

(Sec(5x2+4x ))60

Sec(5x2+4x )9

(Sec(5x2+4x )9)60

7.

(cot 50x)20

cot (50x)4

(cot (50x)4)20

 

The next two categories are as illustrated in the following two tables.                                                                                                 

 

 

Table 1.12

Category F. The exponent has an x or x2 term.

 

Function of a Function of  a Function

Function of a Function of  a Function

Function of a Function of a

Function

 

 

 

=   X X

1.

(Inx3)15x

= (loge x3)15x

In (x3)50x

=loge(x3)50x

(In (x3)50x )15x

= (loge(x3)50x)15x

2.

(Sin(x2+2x))19x

Sin(x2+2x)7x

(Sin(x2+2x)7x)19x

3.

 (Cos(Inx))0.25x

 Cos(Inx)0.5x

 (Cos(Inx)0.5x)0.25x

4.

(Tan(logx))(-1/8)x

Tan (logx)(1/3)x

(Tan (logx)x/3)-x/8

5.

(Cosec(3x3+2x2))5x

Cosec(3x3+2x2)10x

(Cosec(3x3+2x2)10x)5x

6.

(Sec(5x2+4x ))60x

Sec(5x2+4x )9

(Sec(5x2+4x )9x)60x

7.

(cot 50x)20x

cot (50x)4x

(cot (50x)4x)20x

 

When the exponent has a combination of x and y terms the differential of the problem may be solved implicitly.

 

 

 

 

Table 1.13

Category G. The exponent has a combination of x and y terms.

 

Function of a Function of  a Function

Function of a Function of  a Function

Function of a Function of a

Function

 

 

 

=   X X

1.

(Inx3)15y

= (loge x3)15y

In (x3)50x

=loge(x3)50x

(In (x3)50x )15y

= (loge(x3)50x)15y

2.

(Sin(x2+2x))19x

Sin(x2+2x)7y

(Sin(x2+2x)7y)19x

3.

 (Cos(Inx))0.25y

 Cos(Inx)0.5x

 (Cos(Inx)0.5x)0.25y

4.

(Tan(logx))-x/8

Tan (logx)y/3

(Tan (logx)y/3)-x/8

5.

(Cosec(3x3+2x2))5x

Cosec(3x3+2x2)10y

(Cosec(3x3+2x2)10y)5x

6.

(Sec(5x2+4x ))60y

Sec(5x2+4x )9x

(Sec(5x2+4x )9x)60y

7.

(cot 50x)20x

cot (50x)4y

(cot (50x)4y)20y

 

The next category of function of a function are characterized by f(x) being replaced by a product of two or three functions as shown below.

 

 

 

Table 1.14

Category H. f(x) is a product of two or three functions.        f(x) = x is replaced with f(x) =uvw.

 

Basic Function

Function of a Function of  a Function

Function of a Function of a

Function

 

 

 

The new function is raised to a power greater or lesser than 1

 

 

 

Alternatively, the entire function is raised to a power greater or less than 1

 

 

 

=   X X

1.

Inx

In(x(x2 +2)(x3+3))

In(x(x2 +2)(x3+3))3

2.

Sinx

Sin((x2+2x)(x3+3))

Sin((x2+2x)(x3+3))0.5

3.

Cosx

 Cos((Inx)(logx))

 Cos4 ((Inx)(logx))

4.

ex

e(cosx)(sinx)(cotx)

e2(cosx)(sinx)(cotx)

5.

2x

2(Inx)(logx)(cosx)

2100(Inx)(logx)(cosx)

6.

logx

log((cosx)(cotx)(cosx))

log((cosx)(cotx)(cosx))33

7.

Cotx

Cot((Inx)(logx)(ex))

Cot0.25((Inx)(logx)(ex))

 

 

 

 

Table 1.15

Category I. f(x)=x is substituted with an algebraic fraction consisting of two or more functions.

 

Basic Function

Function of a Function of  a Function

Function of a Function of a

Function

 

 

 

The new function is raised to a power greater or lesser than 1

 

 

 

Alternatively, the entire function is raised to a power greater or less than 1

 

 

 

=   X X

1.

Inx

In[ ]

(In( ))50

2.

Sinx

Sin[ ]

Sin[ ]0.5

3.

Cosx

 Cos[ ]

 Cos4[ ]

4.

ex

e((cosx)(sinx))/(cotx)

e2((cosx)(sinx))/(cotx)

5.

2x

2((Inx)(logx))/(cosx))

2100((Inx)(logx))/(cosx)

6.

logx

log[ ]

log[ ]33

7.

Cotx

Cot[ ]

Cot0.25[ ]

 

1.8 Greatest and smallest functions                                            The differential of a function of a function based on the chain rule formulas as stated below shows that there is a smallest function and a greatest function.

Also, there may be an intermediate function depending on the problem given.

Given that y= In x3,                                                            =   X   u= x3is the smallest function while the greatest function is In x3.                                                                 

Table 1.16                                                               

Table **** Smallest Function and Greatest Function

 

 

Smallest Function

Intermediate

Greatest Function

1.

(Inx3)15

= (loge x3)15

x3

Inx3

(Inx3)15

=(f(x))15

 

Function

Cubic

Logarith-mic

Exponential

2.

(Sin(x2+2x))19

x2+2x

Sinx2+2x

(Sin(x2+2x))19

 

Function

quadratic

 

Exponential

3.

 (Cos(Inx))0.25

Inx

Cos(Inx)

(Cos(Inx))0.25

 

Function

Logarith-mic

 

Exponential

4.

(Tan(logx))-1/8

logx

Tan u

Tan-1/8 (logx)

 

Function

Logarith-mic

 

Exponential

5.

Cosec5(3x3+2x2)

3x3+2x2

Cosec u

Cosec5(3x3+2x2)

 

Function

Cubic

Trigonom-etric

Exponential

6.

Sec60 (5x2+4x )

5x2+4x

Sec u

Sec60 (5x2+4x )

 

Function

quadratic

 

 

7.

(cot 50x)20

50x

Cot u

(cot 50x)20

 

Function

Straight Line

Trigonom-etric

Exponential

 

1.9 Chain Rule for Function of a Function of a Function.                                                                          As stated in the previous section, chain rule problems have smallest function, intermediate function and greatest function.                                                                               The table below illustrates the relationship between these functions and the chain rule as stated below.

 

 

 

Table 1.17                                                              

Table 1.17 Chain Rule    =   X   X 

 

differential

X X

 

1.

(Inx3)15

= (loge x3)15

=   X   X 

=15u14 X  X 3x3

= 45u14m-1x3

 

Substitution

y=u15

u= In m

m = x3

2.

(Sin(x2+2x))19

=   X   X 

=19u18 XcosmX (2x+2)

= 19u18(cosm)(2x+2)

 

Substitution

y=u19

u= sinm

m= x2+2x

3.

 (Cos(Inx))0.25

=   X   X 

=0.25u-0.75 X-sinmX (1/x)

= 0.25u-0.75(-sinm)(1/x)

 

Substitution

y=u0.25

u=cosm

 

m= Inx

4.

(Tan(logx))-1/8

=   X   X 

=(-1/8)u(-1/8)-1 Xsec2m X (1/(xIn10))

 

Substitution

y=u-1/8

u= tan m

m=logx

5.

Cosec5(3x3+2x2)

=   X   X 

=5u4 Xcosecmcotm X (9x2+4x)

= 5u4(cosecmcotm)(9x2+4x)

 

Substitution

y=u5

u=cosecm

u=3x3+2x2

6.

Sec60 (5x2+4x )

=   X   X 

=60u59X(secmtanm)X (10x+4)

= 60u59(secmtanm)( 10x+4)

 

Substitution

y=u60

u=secm

u=5x2+4x

7.

(cot 50x)20

=   X   X 

=20u19X(-cosec2 m)X (50)

= 20u19(-cosec2 m)(50)

 

Substitution

y=u20

u=cotm

u=50x

The differential of the problems in the table above is the product of the differential of greatest function, the derivative of the intermediate function and the differential of the smallest function.

Comments

Popular posts from this blog

Angular Motion Engineering Science N4