Angular Motion Engineering Science N4

 Chapter 4 Angular Motion

4.1 Introduction

  Angular displacement unlike linear displacement is displacement that is defined by number of rotations or number of revolutions per unit second about a fixed point or center (shaft).                                  

The diagrams below illustrate the fact that the radius or diameter of the rotating component is considered when there is a conversion of angular velocity into linear velocity.                                                                                                                                                                                                                            

4.2 Formulas and Terminology                                                    

Angular Velocity:   This is the angular displacement travelled per unit second. It has a symbol, w1.The unit for this is radians per second (rad/s).                                                                         Constant Angular Velocity:   The intial and final angular velocity in radian per second or number of revolutions per second are equal,(w1 =w2 ). Therefore, there is no angular acceleration ( α=(w2 -w1) ÷ t=0 rad/s2).                                                                        

Angular Acceleration: This is the change in angular velocity per unit second. The symbol is w2 Angular acceleration has a unit of radian per (second)2(rad/s2).                                                        Radian: π radian = 180 degrees (π = 3.142 radian). The circumference of a circle is πd (the product of π and its diameter(C= πd)). The radian is the ratio of the circumference of a circle and the diameter of that same circle.                                                                                                        

Angular Displacement: The symbol for angular displacement is Ɵ. This is the displacement of the rotating part or component. This displacement is usually given in most problems in terms of number of revolutions per second or number of revolution per minute. The relationship between the number of revolution per second or the number of revolution per minute and the angular displacement is as shown below.                                                                                                              Number of Revolutions = Number of Revolutions/second X Time (seconds)                                                   Number of Revolutions = Number of Revolutions/minute X Time (Minutes)X 60 seconds                           Work Done:  This the work done in Joules in terms of the number of revolutions per second or number of radians per second.                                                                                              

Work Done = 2πNTt                                                                                   

t= time taken (seconds)                                                                   

Work done= TƟ                                                                                                  

since Ɵ= angular displacement in radians                                      

and Ɵ= 2πNt                                                                                       

  Power:  This the work done in Joules per unit second when a wheel or shaft has an angular velocity of N of revolutions per second.                                                                      

Power, 

P = 2πNT                                                                                                                                                                                                                                                                                

 

 

                                                                                                                                         

Table 4.1 Table of Angular Motion Formulas

 

Linear Motion

 

Angular Motion

1.

v=u+at

1.

ω 2= ω 1+αt

2.

2as=v2-u2

2.

2αƟ= ω 22 ω 2 1

3.

s= ut+0.5at2

3.

Ɵ= ω 1t + 0.5αt2

4.

vave= 0.5(v+u)

4.

ω ave=0.5(ω 2+ ω 1)

5.

S= tvave

5.

Ɵ=t ω ave

6.

 

6.

P= 2πNT

 

 

7.

ω= 2πN  (Radians)

 

 

8.

P= T Ɵ

 

 

9.

P= T t ω ave

 

 

10.

T= FR

 

v=final velocity

 

ω 2=final angular

 

 

 

 velocity

 

u=initial velocity

 

ω 1=initial angular

 

 

 

velocity

 

vave= average

 

ω ave= average

 

velocity

 

angular velocity

 

a= acceleration

 

a= angular

 

 

 

acceleration

 

t= time taken

 

t= time taken

 

S= linear

 

s= angular

 

displacement

 

displacement

 

 

 

T= Torque

 

 

 

ω= 2πN

 

 

 

 

 

 

 

 

Average angular velocity: During acceleration or deceleration, the number of revolutions increases or decreases respectively. It is, thus important to calculate the average velocity.                                                                        

Constant Angular Velocity: Uniform or constant velocity is velocity that does not increase or decrease. There is, therefore, no acceleration nor deceleration.                                         

 

4.3 Linear Velocity and Angular Velocity.                                                    

Angular Velocity: The formula that states the relationship between the linear velocity of a wheel and its corresponding angular velocity is as stated below.                               

 v=rω  or                                                                                                   

v=ωr                                                                                                      

ω= radians per second                                                                               

 1 revolution per second =2πr                                                           

2 revolutions per second =2πr                                                 

2 revolutions per second =πd                                                              

3 revolutions per second =3πd                                                    

4 revolutions per second =4πd                                                     

5 revolutions per second =5πd                                                                                                                                                                                                                                 

n revolutions per second =πdN                                          

Therefore, v=πdN                                                                                                                                                                              

2X Radius = Diameter                                                                          

 N= number of revolutions per second                                                                            

See the diagrams below.                                                                  

 

 

 

 






Fig. 4.1  Formula, v=πdN                                          

 

 

 

4.4 Converting Number of Revolutions per seconds into Radians per seconds.                                                    

Angular Velocity: 3600= 1 revolution                                                    

    1 revolution/s =2π radian/s                                                             

2 revolutions/s=2X2π radian/s                                                           

3 revolutions/s=3X2π radians/s                                              

4 revolutions/s=4X2π radians/s                                                   

5 revolutions/s=5X2π radians/s                                                           

10 revolutions/s=10X2π radians/s                                                 

100 revolutions/s=100X2π radians/s                                               

Therefore, n revolutions/s = 2πn radians/s                                  

The greater the diameter of a wheel the greater the circumferential velocity. The circumferential velocity is a  term used for a point on a wheel or rotating component on a machine converted into linear velocity.                                        

The concept of circumferential velocity may be clearly understood from the point of perspective of Fig*****. This diagram illustrates the conversion of the number of revolution of the tyre into linear motion in m/s. 

 

 

 

 






 

 









Fig. 4.2 Wheel of diameter 0.35m rotating clockwise at 85 revolutions per second

 

 

 

 

 




 


Fig. 4.3 Wheel of diameter 0.7m rotating clockwise at 85 revolutions per second.

 

 

 

 

 

 

 

 


 

 

 







Fig. 4.4 Wheel of diameter 2.1m rotating clockwise at 85 revolutions per second.

                                                                       

 

Table 4.2

 

 

Three wheels of different diameters, 0.35m, 0.7m and 2.1m rotating at 85rev/minute                                  (Fig. 4.2 -4.4)

 

 

Angular Velocity

Circumferential

 

 

Velocity, v= πdn

1.

85 rev/ minute

 

2.

85 rev/ minute

 

3.

85 rev/ minute

 

 

Angular Velocity

Angular Velocity

 

Rev/second

Radian/second

 

 

Radian/s=2πXN rev/s

1.

85 rev/ minute

 

2.

85 rev/ minute

 

3.

85 rev/ minute

 

 

4.5 Linear acceleration and angular acceleration.                                                    

The formula a=rα is similar to the formula v=ωr. The first formula is the product of radius and angular acceleration. The second formula is the product of radius and angular velocity.   

4.6 Average angular velocity.                                                   

The formula for average angular velocity is as stated from in the table able. Assuming that a wheel has a constant angular velocity and the initial and final angular velocity are 1000 revolutions per minute and 1000 revolutions per minute, the average angular velocity will be 1000 revolutions per minute.

This is not the case for an acceleration of the wheel from 500 revolutions per minute to 850 revolutions per minute. The average angular velocity is calculated thus: 1/2(500+800)= 650 revolutions per minute.

                                                                                                                                                                                                          4.7 Torque.                                                                                                  

The formulas for Torque are as stated in the table above in terms of Power, radius of the wheel and work done. The work done by a rotating wheel or body about a shaft is the product of the number of revolutions per minute or second and the time duration in seconds.

The power developed by the wheel is actually work done by the wheel or rotating body in Joules per unit second (Joules/second).

4.8 Circumferential Velocity and Power developed.                                                                                      


The table below shows the relationship between Torque, Work done and Power. The development of power in motor vehicles is based on the rotation of a shaft such that the number of revolutions per minute or number of revolutions per seconds are converted into linear motion, v= πdn.                                                                                             

The greater the number of revolutions per unit second the greater the power of the sports car, bakkie or conventional car. This is the most basic reason why people prefer to buy a German car.

 

The unit of Power is the Joule per unit second. Conversion of this Power into Work done is based on multiplying with the time duration in seconds for which that shaft or tyre rotates while accelerating from initial angular velocity to final angular velocity.

 

The reverse is the case when converting Work Done into Power. Divide the Work Done in Joules by the time duration in seconds.                                                           

Since the calculation of angular displacement is based on initial, final and average angular velocities, the calculation of power is also based on a corresponding instantaneous initial, instantaneous final and average power.

The calculation of a problem given in terms of a final and initial angular displacement in radians per second means that the terms 2πN1 and 2πN2 in the Power formula P= 2πNT are equal to the initial and final values in radian per second.

                                                

 

Example 4.1                                                                                                       


Three angle grinders, A, B and C, of diameters as stated below in Table 4.3 accelerate from an angular velocity of 0 revolutions per minute to 1000 revolutions per minute in 2 minutes.  Calculate:                                                                       



a) the angular acceleration of each one of the grinders. 

b) the average angular velocity                                                              

c) the circumferential velocity of grinders A, B and C.   

                            

 

Table 4.3

 

 

 

Angle Grinder

diameter

Circumferential

 

 

 

Velocity (v=πdn)

1.

A

125mm

 

2.

B

175mm

 

3.

C

180mm

 

 

 

 

 

                                                                                                                

 d) the angular displacement during 2 minutes.                                   

e) the number of revolutions.                                                                                                   


Solution:                                                                                                    


a) Final Angular velocity, w2 = 1000 rev/min                                         

Initial Angular Velocity, w1= 0 rev/min                                                 

Convert 1000 revolutions per minute into radians per seconds and substitute into the formula below.                                                                                                            

1000 revolutions per minute                = 104.7198 rad/s

 w2=w1+α

α= (w2- w1)÷t                                                                                                                                                                                                                                                                                                

α    = 0.8727 rad/s2                                                                                                  

Alternatively, substitute into the formula by converting the difference of the angular velocity into radian/ seconds as shown below.

w2=                                                                                                  

α =  0.8727 rad/s2                                                                                     

 b) average angular velocity wave=(w2+w1)÷2                                         

 wave= 0.5(104.7198 +0) rad/s = 52.3599 rad/s                                                                                 

The concept of average angular velocity may be understood from as follows:                                                          



 The angular velocity at 50 seconds is greater than the angular velocity at 40 seconds.                                         

The angular velocity at 60 seconds is greater than the angular velocity at 50 seconds.                                    

 The angular velocity keeps increasing until it reaches a maximum velocity of 1000 rev/minute.                                           

d)   Angular displacement in 2 minutes                                                   

 Ɵ= 52.3599 rad/s X 2minutes X 60 seconds          = 6283.188 rad                                                                                             

Alternatively, the the following formulas may be applied:                                                                                       


  i) 2αƟ= w22 –w2 1                                                                       

Ɵ= [(104.7198rad/s)2 –(0)2] ÷ (2 X 0.8727 rad/s2)                                   

=   6283.rad                                                                                                                                                                                       


Ɵ= (w22 –w2 1)÷ 2α                                                                                                                                                                                                                                                                                                                                                        ii) Ɵ= w1t + 0.5αt2                                                                                    

= (0 rad/s X t) + 0.5(0.8727 rad/s2X (2min X 60sec)2                                                                                                                                                                             

  6283.188 rad                                                                                  

  e)  Conversion of number of revolutions per seconds into radian per second is carried by multiplying by 2π radian. This is the reverse case when converting from rad/s to number of revolution per second.    Number of revolutions per second                                              = 1000.0405 revolutions  

          

 

Table 4.4

 

 

 

 

Angular

Velocity

Angular

Velocity

Time taken (sec)

Angular Acceleration

 

 

 

 

Average Angular Velocity

 

 

 

 

Angular Displacement (Radian)

 

Initial w1

Final w2

 

 

a.

 rest

2π rad/s

30 sec

 

 

 

 

 

 

 

 

 

 

 

b.

 rest

2π rad/s

15 sec

 

 

 

 

 

 

 

 

 

 

 

c.

 rest

2π rad/s

10 sec

 

 

 

 

 

 

 

 

 

 

 

d.

 rest

2 rev/s

5 sec

 

 

 

 

 

 

 

 

 

 

 

e.

60rev/min

180rev/min

2 min

 

 

 

 

 

 

 

 

 

 

 

f.

60rev/min

180rev/min

1 min

 

 

 

 

 

 

 

 

 

 

 

g.

rest

80rev/min

30 sec

 

 

 

 

 

 

 

 

 

 

 

h.

100rev/s

20rev/s

1 min

 

 

 

 

 

 

 

 

 

 

 

i.

πrad/s

5 πrad/s

60 sec

 

 

 

 

 

 

 

 

 

 

 

j.

1 rev/s

4rev/s

45 sec

 

 

 

 

 

 

 

 

 

 

 

k.

rest

 

30 sec

 

 

 

 

 

 

 

 

 

 

50 revolutions

 

l.

rest

 

15 sec

 

 

 

 

 

 

 

 

 

 

20 revolutions

m.

rest

 

10 sec

 

 

 

 

 

 

 

 

 

 

 

n.

rest

 

5 sec

 

 

 

 

 

*****

 

 

 

 

 

o.

60rev/min

 

1 min

 

 

 

 

 

******

p.

rest

 

30 sec

7 rev

 

 

 

 

 

q.

100rev/s

 

1 min

 

 

 

 

 

 

r.

πrad/s

 

60 sec

 

 

 

 

 

 

s.

1 rev/s

 

45 sec

 

 

 

 

 

 

t.

3π rad/s

0 rad/s

 

 

 

 

 

 

 

u.

2π rad/s

2π rad/s

30sec

 

 

 

 

 

 

v.

20rev/s

20rev/s

 

 

 

 

 

 

 

w.

1000 rev/min

1000 rev/min

 

 

x.

4rev/s

4rev/s

 

 

y.

1

 

 

 

                                                                                                                                                                                                                                                                                                                                                                                                                                        

Example 4.2                                                                                                       

Assuming that one of the angle grinders in example 1, angle grinder A, accelerates from an angular velocity of 120 revolutions per minute to 1000 revolutions per minute in 2 minutes. Calculate:                                                                            

a) the angular acceleration of the grinder.                                              

 b) the average angular velocity.                                              

d) the angular displacement during 2 minutes.                                  

e) the number of revolutions.                                                                                                                                                    

f) State the angle grinder that accelerates faster. Give reasons for your answer.                                                                  

Solution:                                                                                     

a) Convert 120 revolutions per minute into radians per seconds and substitute into the formula below.                                                                                 

w2=w1+αt                                                                                               

120 revolutions per minute =                 = 12.5664 rad/s

α= (w2w1)÷t                                                                                                                                                                                                                                                                                                

w2=                                                                                                  

α =   0.7679 rad/s2                                                                                                                                                                                                                                                                                                                                                                                                    

b) average angular velocity wave= 0.5(w2+w1)                                          

wave= 0.5(12.5664  + 104.7198 ) rad/s = 58.6431 rad/s

 d) the angular displacement during 2 minutes.                                             

Ɵ= 58.6431 rad/s X 2minutes X 60 seconds                                 

=  7037.172 rad                                                                                             

Alternatively, the the following formulas may be applied:                                                                                        

 i) 2αƟ= w22 –w2 1                                                                       

Ɵ= [(104.7198rad/s)2 –(12.5664)2] ÷ (2 X 0.7679 rad/s2)                                  

 =   7037.584 rad                                                                                                                                                                                      

Ɵ= (w22 –w2 1)÷ 2α                                                                                                                                                                                                                                                                                                                                                        

ii) Ɵ= w1t + 0.5αt2                                                                                   

= (12.5664 rad/s X 2 X60) + 0.5(0.7679 rad/s2.X (2X 60sec)2                                                                                                                                                                              

 7036.848 rad                                                                                                

e) the number of revolutions                                            

7037.172 rad ÷ 2π = 1120 revolutions                                               

f) The angle grinder in example A accelerates faster than the one in example 2. The change in velocity per unit second in example 1 is greater. α =  0.8727 rad/s2                                                                                                                                                                                                     is greater than α =  0.7679 rad/s2                                                                                                                                                                                                                 

Example 4.3                                                                                                       A wheel of diameter 1m has an initial angular velocity of 0 rev/minute and final angular velocity of  2π rad/s in 30 seconds. Calculate:                                                                         a) the average angular velocity in radian per second.                          b) the angular velocity in radian/s2.                                                 c) the angular displacement in radian.                                             d) the angular displacement in revolutions.                                   (Refer to Table 4.4 a)                                                                              

 

 

Example 4.4                                                                                                      

A wheel of diameter 1m accelerates from 60 rev/min to 180 rev/min in 2 minutes. Calculate:                                                                            

 a) the initial and final velocities in radian per second                                               

 b) the angular acceleration in radian/s2.                                                         

c)  the average angular velocity in radian per second.                                                                        

d) the angular displacement in radian.                                             

e) the angular displacement in revolutions.                                   (Refer to Table 4.4 )                                                                               

 

 

 

Example 4.5                                                                                                       

A wheel of diameter 2m has an initial angular velocity of 2π rev/s and a final angular velocity of 2π rev/s in 30 seconds. Calculate:                                                                            

a) the initial and final velocities in radian per second                                                

b) the angular acceleration in radian/s2.                                                         

c)  the average angular velocity in radian per second.                                                                         

d) the angular displacement in radian.                                             

e) the angular displacement in revolutions.                                   (Refer to Table 4.4 )                                                                      

Example 4.6                                                                                                       

An angle grinder accelerates from rest to a final velocity in 30 seconds. It makes 50 revolutions. Calculate:                                                                            

 a) final angular velocity in radian per second                                               

b) the angular acceleration in radian/s2.                                                         

c)  the average angular velocity in radian per second.                                                                         

d) the angular displacement in radian.                                                                                

(Refer to Table 4.4 )

a) Final Angular velocity, w2 = 1000 rev/min                                          

From the Table ,                                                                          

Ɵ=twave                                                                            

wave=0.5(w2+w1)                                                                           

Ɵ= 50 revolutions                                                                     

Substituting: 50 revolutions = 30 seconds X wave                                                                            

wave  = 1.667 revolutions/s                                                              

Make w2 subject of the formula based on wave=0.5(w2+w1)                                                                           

w2= 2wave - w1                                                                                                  

w2= 2(1.667 rev) – 0                                                                               

w2= 3.334 revolutions/s

b) w2=w1+αt                                                                                                                          

α = (w2-w1)/t                                                                                                                   

Substituting:                                                                                   

α = (3.334-0)/30 seconds                                                                                                                   

α = 0.11113 radian/s




c) From a above:                                                                              

wave  = 1.667 revolutions/s X 2π                                                            

wave  = 10.4754 radian/s 

d)
 Angular displacement in radian:                                                  
Ɵ= 50 revolutions                                                                     
Ɵ= 50 revolutions X 2π                                                                    
Ɵ=  314.2 radians                                                                                                                                                                                                                                                                                                



Comments